Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC In Vivo

نویسندگان

  • Jörg Schumacher
  • Volker Behrends
  • Zhensheng Pan
  • Dan R. Brown
  • Franziska Heydenreich
  • Matthew R. Lewis
  • Mark H. Bennett
  • Banafsheh Razzaghi
  • Michal Komorowski
  • Mauricio Barahona
  • Michael P. H. Stumpf
  • Sivaramesh Wigneshweraraj
  • Jacob G. Bundy
  • Martin Buck
چکیده

UNLABELLED Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. IMPORTANCE Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling--sensed by the UTase (glnD) and PII (glnB), respectively--and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25.

Pseudomonas fluorescens SBW25 is capable of growing on histidine as a sole source of carbon and/or nitrogen. Previous work showed that the two-component regulatory system CbrAB is required for expression of the histidine utilization (hut) locus when histidine is the sole source of carbon and nitrogen. Here, using mutational analysis and transcriptional assays, we demonstrate involvement of a se...

متن کامل

NtrC is required for control of Klebsiella pneumoniae NifL activity.

In response to molecular oxygen and/or fixed nitrogen, the product of the Klebsiella pneumoniae nitrogen fixation L (nifL) gene inhibits NifA-mediated transcriptional activation. Nitrogen regulation of NifL function occurs at two levels: transcription of the nifLA operon is regulated by the general Ntr system, and the activity of NifL is controlled by an unknown mechanism. We have studied the r...

متن کامل

Combinatorial stress responses: direct coupling of two major stress responses in Escherichia coli

Nitrogen is an essential element for all life, and this is no different for the bacterial cell. Numerous cellular macromolecules contain nitrogen, including proteins, nucleic acids and cell wall components. In Escherichia coli and related bacteria, the nitrogen stress (Ntr) response allows cells to rapidly sense and adapt to nitrogen limitation by scavenging for alternative nitrogen sources thr...

متن کامل

Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex.

The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like signal transduction protein, has been...

متن کامل

Evidence for a second interaction between the regulatory amino-terminal and central output domains of the response regulator NtrC (nitrogen regulator I) in Escherichia coli.

Nitrogen limitation in Escherichia coli activates about 100 genes. Their expression requires the response regulator NtrC (also called nitrogen regulator I or NR(I)). Phosphorylation of the amino-terminal domain (NTD) of NtrC activates the neighboring central domain and leads to transcriptional activation from promoters that require sigma(54)-containing RNA polymerase. The NTD has five beta stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013